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ABSTRACT 

In this paper, we prove that if T  is log -hyponormal then the generalized Weyl’s 

theorem holds for T ; that is, ( ) ( ) ( )
BW

T T E Tσ σ= − . 
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INTRODUCTION 

Let Η be a complex Hilbert space and let ( )Β Η be the algebra of all 

bounded linear operators acting on Η . If ( )T ∈Β Η , we shall write ker( )T , 

( )ran T for the null space and range of T ,respectively. For ( )T ∈Β Η , we 

denote the spectrum, the point spectrum and the approximate point spectrum 

of T  by ( ), ( )
p

T Tσ σ and ( )
a

Tσ , respectively. 

 

 If  ( )T ∈Β Η  set ( ) : dimker( )T Tα = , the dimension of the null space, 

and ( ) : dim ( )T co ran Tβ = − , the co-dimension of the range. 

  

The class of all upper semi-Fredholm operators is defined as the set 

( )SF+ Η of all ( )T ∈Β Η  such that ( ) ( )T Tα β<  and ( )ran T  is closed. The 

class of all lower semi-Fredholm operators is defined as the set ( )SF− Η of all 

( )T ∈Β Η  such that ( )Tβ < ∞ . The class of all semi-Fredholm operators is 

denoted by ( )SF± Η , while by ( ) ( ) ( )F SF SF+ −Η = Η ∩ Η we shall denote the 

class of all Fredholm operators. 

 

 The index of ( )T SF H±∈  is defined by ( ) ( ) ( )ind T T Tα β= − . The 

other two quantities associated with a linear operator T  are the ascent 

: ( )a a T= , defined as the smallest non-negative integer s  (if it does exist) 

such that 1ker( ) ker( )s sT T += and the descent : ( )d d T= , defined as the 
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smallest non-negative integer t  (if it does exist) such that 
1( ) ( )t tran T ran T += . It is well known that if ( )a T Iλ−  and ( )d T Iλ− are 

both finite, then ( ) ( )a T I d T Iλ λ− = − and λ  is a pole of the resolvent 
1( )T Iλ λ −→ − , in particular an isolated point of the spectrum ( )Tσ ( see 

proposition 1.49 and theorem 1.52 of Dowson [9]). The class of Weyl's 

operators is defined by ( ) : { ( ) : ( ) 0}W T T F H ind T= ∈ =  while the class of 

Browder operators is defined by: 

 

( ) { ( ) : ( ) , ( ) }Bro H T F H a T d T= ∈ < ∞ < ∞ . 

 

Obviously ( ) ( )Bro H W H⊆ . The Weyl's spectrum and the 

Browder’s spectrum of  ( )T ∈Β Η are defined by: 

 

  ( ) { : ( )}
W

T C I T W Hσ λ λ= ∈ − ∉ , and 

 

 ( ) { : ( )}
B

T C I T Bro Hσ λ λ= ∈ − ∉ . 

 
Berkani (1990)  introduced the concept of B − Fredholm as  follows: 

For each integer n , define 
n

T  to be the restriction of T  to ( )nran T viewed 

as a map from ( )nran T into ( )nran T  (in particular 0T T= ).  

 

If for some integer n  the space ( )nran T  is closed and  
n

T is a 

Fredholm operator, then T is called a B − Fredholm operator. In this case 

m
T is a Fredholm operator and ( ) ( )

n m
ind T ind T= for each .m n≥   

 

Let ( )BF H be the class of all B − Fredholm operators. It is known 

that ( ) ( ).F H BF H⊆  Moreover,  an operator ( )T B H∈  is B − Fredholm if 

and only if T Q F= ⊕ , where Q  is a nilpotent operator and F is Fredholm. 

[3,Theorem 2.7] 

 

Definition 1.1.  [5] Let ( )T B H∈ . The B − Fredholm spectrum ( )
BF

Tσ  is 

defined by: 

 

 ( ) { : ( )}
BF

T C I T BF Hσ λ λ= ∈ − ∉ . 
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Definition 1.2. [3] Let ( )T B H∈  be a B − Fredholm  operator and let n  be 

any integer such that 
n

T  is a Fredholm operator. Then the index ( )ind T of is 

T  defined as the index of the Fredholm operator 
n

T . 

 

Definition 1.3. [5] An operator ( )T B H∈  is called a B − Weyl operator if it 

is a B − Fredholm operator of index 0.  The B − Weyl spectrum ( )
BW

Tσ of  

T is defined by: 

 

 ( ) { : ( )}.
BW

T C I T BW Hσ λ λ= ∈ − ∉  

 

  In the case of a hyponormal operator acting on a Hilbert space ,H   

Berkani [6] showed  that: 

 

 ( ) ( ) ( ),
BW

T T E Tσ σ= −  

 

 where ( )
BW

Tσ  is the B − Weyl spectrum of  T and ( )E T  is the set of all 

eigenvalues of  T which are isolated in the spectrum of T . 
 

Definition 1.4. [5]  Let ( )T B H∈ . We will say that: 

 

a) T  satisfies Weyl’s theorem if 0( ) ( ) ( )
W

T T E Tσ σ= − , where 

0 ( )E T  is the set of all eigenvalues of finite multiplicity isolated 

in ( ).Tσ  

b) T  satisfies generalized Weyl’s theorem if  

( ) ( ) ( )
BW

T T E Tσ σ= − . 

c) T  satisfies Browder’s theorem if 0( ) ( ) ( )
W

T T Tσ σ π= − , where 

0 ( )Tπ  is the set  of all poles of finite rank.  

d) T  satisfies Browder’s theorem if ( ) ( ) ( )
W

T T Tσ σ π= − , where 

( )Tπ  is the set  of all poles. 

 

From [3, 5, 7, 11] we have the following implication: 

  

generalized Weyl’s theorem  ⇒Weyl’s theorem 

                        ⇒Browder’s theorem 

 

generalized Browder’s theorem ⇔  Browder’s theorem 
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MAIN RESULTS 

Following [8], an operator T is called log− hyponormal if T is 

invertible and satisfies log( ) log( ).T T TT∗ ∗≥  Let | |T U T=  be the 

decomposition of T . If T  is log− hyponormal, then the operator U is 

unitary. 

 
..

Cho Showed that if T is log− hyponormal operator, then so is 
1

T
−

. 

We write ( )r T  and ( )W T for the spectral radius and numerical range, 

respectively. It is well-known that ( )r T T≤ and that is ( )W T convex with 

convex hull ( ) ( )conv T W Tσ ⊆ . T is called convexoid if 

co v ( ) ( )n T W Tσ = , and normaloid if ( )r T T= . 

 
Lemma 2.1[8] 

If | |T U T= is a log− hyponormal operator, then T is normaloid; i.e., the 

spectral radius ( )r T T= . 

 

Lemma 2.2 

Let | |T U T=  be a log− hyponormal operator and let Cλ ∈ . Assume 

that ( ) { }Tσ λ= . Then T Iλ= . 

 

Proof. Since T  is log− hyponormal, then T  is invertible and 0λ ≠ . We see 

that 1,T T −  are normaloid. On the hand 1 1
( ) { }Tσ

λ
− = , so 

1 1
| || | 1T T λ

λ
− = = . It follows that T  is convexoid, so ( ) { }.W T λ=  

ThereforeT Iλ= . 

 

Recall that an operator ( )T B H∈ is called isoloid if all isolated points 

( ( ))iso Tσ of ( )Tσ are eigenvalues ofT .  As a consequence of lemma 4 and 

[12, theorem 14] we have immediately 
 

Corollary 2.3.  Let ( )T B H∈ . If T is log− hyponormal, then T is isoloid. 

 

Theorem  2.4.  Let ( )T B H∈  be a log− hyponormal operator, then T is of 

finite ascent. 
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Proof.  Let 2ker( )x T∈ , then 
2 2

0,Tx T x≤ =  and so ker( )x T∈ .  Since by 

[9] the eigenvalues of log− hyponormal operators are normal eigenvalues of 

T , if 0 ( )
p

Tλ σ≠ ∈ and 

))ker(( 2ITx λ−∈ , ( )( ) 0 ( ) ( )T I T I T I T I xλ λ λ λ∗− − = = − − and 
2

( ) ( ) ( ) , 0T I x T I T I x xλ λ λ∗− = − − = .  

 

Hence, if T is log− hyponormal, then ( ) 1.a T Iλ− =  

 

Definition 2.5. [2, definition 1.1]  Let ( ( ))Hol Tσ be the space of all 

functions that are analytic in an open neighborhoods of ( )Tσ . Let 

( )T B H∈ . The operator T is said to have the single-valued extension 

property at 0 Cλ ∈  (SVEP at 0λ ), if for every open disc 
0

Dλ centered at 0λ  

the only analytic function 
0

:f D Hλ → which satisfies the equation 

( ) ( ) 0I T fλ λ− =  for all 
0

Dλλ ∈ is the function 0.f ≡  

 

Recall [1, 2, 11, 13, 14, 15] that an operator ( )T B H∈ is said to have 

the SVEP if T has the SVEP at every point .Cλ ∈  Trivially, an operator 

( )T B H∈ has the SVEP at every point of the resolvent ( ) ( ).T C Tρ σ= −   

Moreover, from the identity theorem for analytic function it easily follows 

that T  has the SVEP at every point of the boundary ( )Tσ∂  of the spectrum. 

In particular, T  has the SVEP at every isolated point of the spectrum. 

Hence, we have the following implication 

( )Tσ does not cluster at 0λ ⇒  T has the SVEP at 0λ  . 

 

In [15], Laursen proved that if T is of finite ascent, then T has SVEP. 

 

Theorem  2.6.  If ( )T B H∈ is log− hyponormal operator. Then T and 

T
∗
satisfy Weyl’s theorem. 

 

Proof.  Since T  is log− hyponormal, then T  has SVEP. Then T  satisfies 

Browder’s theorem if and only if T
∗
satisfies Browder’s theorem if and only 

if: 

 

0 0( ) ( ) ( ) ( )
W

T T T E Tπ σ σ= − ⊆ and 0 0( ) ( ) ( ) ( ).
W

T T T E Tπ σ σ∗ ∗ ∗ ∗= − ⊆   
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If 0 ( )E Tλ ∗∈ then T and T
∗
 both has SVEP at λ  and 

0 (( ) ) ( )a T I d T Iλ λ∗< − = − < ∞ . Thus the ascent and descent of T Iλ− and 

( )T Iλ ∗−  are finite and hence equal [10]. Then T Iλ−  and ( )T Iλ ∗−  are 

Fredholm operators  of index zero.  

 

Consequently,  0 ( ) ( ) ( )
W

E T T Tσ σ⊆ − and 0 ( ) ( ) ( )
W

E T T Tσ σ∗ ∗ ∗⊆ − . This 

implies that both T and T
∗
satisfy Weyl’s theorem.  

 

Definition 2.7.  [7, definition 2.2]  Let ( )T B H∈ . We will say that T  is of 

stable sign index if for each , ( )
BF

Tλ µ ρ∈ , ( )ind I Tλ −  and ( )ind I Tµ −  

have the same sign. 

 

Proposition 2.8.  Let ( )T B H∈ be a log− hyponormal operator. Then T is 

of stable index. 

 

Proof. Let T  be a log− hyponormal operator. Then 

ker( ) ker( ) ( ) .T T ran T∗ ⊥= =   Since ( ) 1a T = , then 2ker( ) ker( )T T= . 

Moreover, if  T  is also a B − Fredholm operator, then there exists an integer 

n  such that ( )nran T  is closed and such that  : ( ) ( )n n

n
T ran T ran T→ is a 

Fredholm operator. We have: 

   

1
( )

( )
( ) ( ) dim(ker( ) ( ) dim( )

n

n

n ran T
n ran T

ind T ind T T ran T += = ∩ −  

    1
( )

( )
dim( )

n

n
ran T

ran T
+= −  

so ( ) 0.ind T ≤  

 

Further, if ( )
BF

Tλ ρ∈ , then I Tλ − is a B − Fredholm operator, and 

I Tλ − is also a log− hyponormal operator. From the preceding argument, 

we have in ( ) 0.d I Tλ − ≤ Therefore T is of stable index. 

 

Since a log− hyponormal operator is of stable sign index,  then from  

[7, Theorem 2.4] we have immediately the following corollary. 

 

Corollary  2.9.  Let ( )T B H∈  be a log− hyponormal operator and 

let ( ( ))f Hol Tσ∈ . Then ( ( )) ( ( ))
BW BW

f T f Tσ σ= . 

 



Generalized Weyl’s Theorem for Log-hyponormal 

 

79 
Malaysian Journal of Mathematical Sciences 

 

Berkani  [6] proved that if ( )T B H∈  is a hyponormal. Then T satisfies 

generalized Weyl's theorem ( ) ( ) ( )
BW

T T E Tσ σ= − . In the following 

theorem, we extend this result to the case of a log− hyponormal operator. 

 

Theorem 2.10.  Let ( )T B H∈  be a log− hyponormal. Then T satisfies  

generalized Weyl's theorem  ( ) ( ) ( )
BW

T T E Tσ σ= − . 

 

Proof. Let ( ) ( )
BW

T Tλ σ σ∈ − . Then T Iλ− is a B − Fredholm operator of 

index zero. Hence it follows from  [10] that there exist M, N closed 

subspaces of H such that  , |
M

H M N T Iλ= ⊕ − is a Fredholm operator of 

index zero and |
N

T Iλ− is a nilpotent operator. 

 

Let | , |
M N

R T S T= = , and 1 2| , |
M N

I I I I= = . Since T is a log− hyponormal 

then so is .R Hence it follows from  [8] that: 

 

   0( ) ( ) ( ).
W

R R E Rσ σ− =  

 

We have two cases: 

 

Case 1: ( ).Rλ σ∈ . Since  1R Iλ− is a Fredholm operator of index zero then 

0 ( )E Rλ ∈  and so λ  is isolated in ( )Rσ .  

 

Since 1 2( ) ( )T I R I S Iλ λ λ− = − ⊕ −  is nilpotent then 

1( ) {0} ( ) {0}T I R Iσ λ σ λ− − = − − . Therefore 0 is isolated in 

( ), . .,T I i eσ λ− , λ  is isolated in ( )Tσ . But since ( )
p

Rλ σ∈  then  ( ).E Tλ ∈  

Case 2: ( )Rλ σ∉ . In this case we also deduce from  

1 2( ) ( )T I R I S Iλ λ λ− = − ⊕ − , that λ  is isolated in ( )Tσ . Since T Iλ− is 

not invertible then ( ).E Tλ ∈  

 

Conversely let ( ).E Tλ ∈  Then λ  is isolated in ( )Tσ  and  we can represent 

T  as a direct sum 1 2T T T= ⊕  where 1( ) { }Tσ λ=  and 2( ) ( ) { }T Tσ σ λ= − .  

 

Since T is log− hyponormal operator then 1T  is also log− hyponormal 

operator. Since T  is invertible then 0 ( ).Tσ∉ Therefore  we can write: 
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  1 1 1 1 1

1

0 ( ) ( ) ( )
k

n

j

j

F T c T I T Iλ λ
=

= = − −∏ ,  

 

with 0,  and , 1, , .
j

n j kλ λ≠ ≠ = �  

 

Since 1 1j
T Iλ−  is invertible for every 1, , ,j k= � , then 1 1( ) 0nT Iλ− = and so 

1 1T Iλ− is nilpotent. Since  2 2T Iλ− is invertible  it follows from [5] that 

T Iλ− is a Fredholm operator of index 0. Therefore  ( ) ( ).
BW

T Tλ σ σ∈ −  

 

Definition 2.11. [8, definition 3.1] An operator ( )T B H∈  is called polaroid 

if all isolated points of the spectrum of T are poles of the resolvent of T . 
 

Corollary 2.12.  Let ( )T B H∈ be a log− hyponormal operator, then T is a 

Polaroid operator. 

 

Proof. This is an immediate consequence of lemma 2.2, theorem 2.10 and 

[7].                    �  
 

 
The following result is a consequence of corollary 2.12 and [7]. 

 

Corollary 2.13. Let ( )T B H∈ be a log− hyponormal, then 

( ( )) ( ( ))E f T f Tπ= for every ( ( ))f Hol Tσ∈ . 

 

Theorem 2.14.  Let ( )T B H∈ be a log− hyponormal. Then ( )f T  satisfies 

generalized Weyl's theorem  ( ( )) ( ( )) ( ( ))
BW

f T f T E f Tσ σ− =  for every 

( ( )).f Hol Tσ∈  

 

Proof.  T satisfies generalized Weyl's theorem by  theorem 2.10 and isoloid 

by corollary 2.3.  Moreover, from corollary 2.9 we 

have ( ( )) ( ( ))
BW Bw

f T f Tσ σ= . From [6, theorem 2.10], it follows that 

( )f T satisfies generalized Weyl's theorem.             �   
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