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ABSTRACT

In this paper, we prove that if T is log -hyponormal then the generalized Weyl’s
theorem holds for T ; thatis, o, (T)=0(T)— E(T) .
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INTRODUCTION

Let Hbe a complex Hilbert space and let B(H) be the algebra of all
bounded linear operators acting on H. If T B(H), we shall write ker(T),
ran(T) for the null space and range of T ,respectively. For Te B(H), we
denote the spectrum, the point spectrum and the approximate point spectrum
of T by O'(T),O'p (T)and o, (T), respectively.

If TeB(H) seta(T):=dimker(T), the dimension of the null space,
and S(T) = co—dimran(T) , the co-dimension of the range.

The class of all upper semi-Fredholm operators is defined as the set
SF,.(H)of all TeB(H) such that (7)< B(T) and ran(T) is closed. The

class of all lower semi-Fredholm operators is defined as the set SF_(H) of all
T € B(H) such that S(T) <o . The class of all semi-Fredholm operators is
denoted by SF, (H), while by F(H)=SF,(H)SF_(H) we shall denote the
class of all Fredholm operators.

The index of T e SF,(H) is defined byind(T)=a(T)— B(T). The
other two quantities associated with a linear operator 7T are the ascent
a:=a(T), defined as the smallest non-negative integer s (if it does exist)

such that ker(T*)=ker(T*"")and the descent d:=d(T), defined as the
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smallest non-negative integer ¢ (if it does exist) such that
ran(T") = ran(T"™") . It is well known that if a(T —AI) and d(T — AI) are
both finite, then a(T —AI)=d(T —Al)and A is a pole of the resolvent

A— (T —AI)™", in particular an isolated point of the spectrumo(T)( see

proposition 1.49 and theorem 1.52 of Dowson [9]). The class of Weyl's
operators is defined by W(T')={T € F(H):ind(T)=0} while the class of
Browder operators is defined by:

Bro(H)={Te F(H):a(T) < ,d(T) <} .

Obviously Bro(H)cW(H). The Weyl's spectrum and the
Browder’s spectrum of T € B(H) are defined by:

0, (T)={Ae C: Al -T¢W(H)}, and
0,(T)={Ade C: Al -T¢ Bro(H)}.

Berkani (1990) introduced the concept of B —Fredholm as follows:
For each integer n, define 7, to be the restriction of 7' to ran(T") viewed

as amap from ran(T")into ran(T") (in particular 7, =T ).

If for some integer n the space ran(T") is closed and T is a
Fredholm operator, then T is called a B —Fredholm operator. In this case
T, is a Fredholm operator and ind(T,) =ind(T),) for each m > n.

Let BF(H)be the class of all B—Fredholm operators. It is known
that F(H)c BF(H). Moreover, an operator T € B(H) is B—Fredholm if

and only if T=0Q® F, where Q is a nilpotent operator and F is Fredholm.
[3,Theorem 2.7]

Definition 1.1. [5] Let T B(H). The B—Fredholm spectrum o, (T) is
defined by:

0, (T)={Ae C: Al -T¢ BF(H)}.
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Definition 1.2. [3] Let 7€ B(H) be a B—Fredholm operator and let n be
any integer such that 7 is a Fredholm operator. Then the index ind(T') of is

n

T defined as the index of the Fredholm operator T, .

Definition 1.3. [5] An operator T € B(H) is called a B—Weyl operator if it

is a B—Fredholm operator of index 0. The B—Weyl spectrum o, (T') of
T is defined by:

Guy (T)={Ae C: A -T¢ BW(H)}.

In the case of a hyponormal operator acting on a Hilbert space H,
Berkani [6] showed that:

GBW (T) = G(T) - E(T)7

where o, (T') is the B—Weyl spectrum of 7 and E(T) is the set of all
eigenvalues of T which are isolated in the spectrum of T .

Definition 1.4. [5] Let T B(H) . We will say that:

a) T satisties Weyl’s theorem if o, (T)=0)—E,(T), where
E,(T) is the set of all eigenvalues of finite multiplicity isolated
in o(T).

b) T satisfies generalized Weyl’s theorem if
Oy T)=0(T)-E (T).

c¢) T satisfies Browder’s theorem if o, (I')=0c()-7x,(T), where
7,(T) is the set of all poles of finite rank.

d) T satisfies Browder’s theorem if o, (I')=0c()—7x (T), where
7 (T) is the set of all poles.

From [3, 5, 7, 11] we have the following implication:

generalized Weyl’s theorem —> Weyl’s theorem
= Browder’s theorem

generalized Browder’s theorem < Browder’s theorem
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MAIN RESULTS

Following [8], an operator T is called log—hyponormal if T is
invertible and satisfies log(T'T)>log(TT"). Let T=UIT| be the
decomposition of 7. If T is log—hyponormal, then the operator U is
unitary.

Cho Showed that if T is log—hyponormal operator, then so is 77'.
We write r(T') and W(T)for the spectral radius and numerical range,

respectively. It is well-known that »(T) < ||T|| and that is W(T') convex with
convex  hull convo(T)cW(T). Tis called convexoid if

convo(T)=W(T), and normaloid if »(T")= ||T|| .

Lemma 2.1[8]
If T=UITlis a log—hyponormal operator, then T is normaloid; i.e., the

spectral radius r(T) =||T||

Lemma 2.2
Let T=UIT| be a log—hyponormal operator and let Ae C. Assume

thato(T)={A}. Then T = Al .
Proof. Since T is log—hyponormal, then 7 is invertible and A # 0. We see

that T,7"' are normaloid. On the handO'(T‘l)z{%}, SO
||T||HT‘1H=I/1II%I=1. It follows that T is convexoid, so W(T)={A}.
Therefore T = A1 .

Recall that an operator 7€ B(H) is called isoloid if all isolated points
iso(o(T))of o(T)are eigenvalues of 7. As a consequence of lemma 4 and
[12, theorem 14] we have immediately

Corollary 2.3. Let Te B(H). If T is log— hyponormal, then T is isoloid.

Theorem 2.4. Let Te B(H) be a log— hyponormal operator, then T is of
finite ascent.
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Proof. Let xe ker(T?), then ||Tx||2 < Hsz“ =0, and so xe ker(T). Since by
[9] the eigenvalues of log—hyponormal operators are normal eigenvalues of
T, if 0+Aeo,(T)and
xe ker(T —AD?) (T - AT -A)=0=(T—-AI) (T — Al)x and

|7 = A0 ={(T = A1) (T = AD)x,x) =0.

Hence, if T is log—hyponormal, then a(T —Al)=1.

Definition 2.5. [2, definition 1.1] Let Hol(o(T))be the space of all
functions that are analytic in an open neighborhoods of o(T). Let
Te B(H). The operator T is said to have the single-valued extension
property at 4, € C (SVEP at 4,), if for every open disc D, centered at 4,

the only analytic function f:D, — H which satisfies the equation
(AI-T)f(A)=0 forall Ae D, is the function f =0.

Recall [1, 2, 11, 13, 14, 15] that an operator T € B(H) is said to have

the SVEP if T has the SVEP at every point Ae C. Trivially, an operator
T e B(H) has the SVEP at every point of the resolvent o(T)=C —-oc(T).

Moreover, from the identity theorem for analytic function it easily follows
that 7 has the SVEP at every point of the boundary do(T) of the spectrum.

In particular, 7 has the SVEP at every isolated point of the spectrum.
Hence, we have the following implication
o(T) does not cluster at 4, = T has the SVEP at 4, .

In [15], Laursen proved that if T is of finite ascent, then 7" has SVEP.

Theorem 2.6. If Te B(H)is log—hyponormal operator. Then T and
T" satisfy Weyl’s theorem.

Proof. Since T is log—hyponormal, then T has SVEP. Then T satisfies

Browder’s theorem if and only if 7" satisfies Browder’s theorem if and only
if:

7,(T)=0(T)—0, (T) C E,(T)and 7,(T")=o(T") -0,/ (T*) C E,(T").
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If AeE,(T")then Tand T° both has SVEP at A and
0<a((T—=AI)")=d(T — AI') < oo . Thus the ascent and descent of 7 — Al and

(T —AI)" are finite and hence equal [10]. Then T —AI and (T —AI)" are
Fredholm operators of index zero.

Consequently, E(T)co(T)—-o,(T)and E(T")co(T")—o0,(T"). This
implies that both T and T~ satisfy Weyl’s theorem.

Definition 2.7. [7, definition 2.2] LetT e B(H). We will say that T is of
stable sign index if for each A,ue p,.(T), ind(AI-T) and ind(ul —T)
have the same sign.

Proposition 2.8. Let Te B(H) be a log—hyponormal operator. Then T is
of stable index.

Proof. Let T be a log—hyponormal  operator.  Then
ker(T) =ker(T") = ran(T)*. Sincea(T)=1, then ker(T)=ker(T?).
Moreover, if T is also a B—Fredholm operator, then there exists an integer
n such that ran(T") is closed and such that 7 :ran(T")— ran(T")is a
Fredholm operator. We have:

ind(T) = ind(T,) = dim(ker(T) N ran(T" ) — dim("‘”(T"/

ran(T™! ))
o ™
=—dim("™ A ()
so ind(T)<0.

Further, if Ae p,,(T), then AI —T is a B—Fredholm operator, and
Al —T is also a log—hyponormal operator. From the preceding argument,
we have ind(AI —T) <0.Therefore T is of stable index.

Since a log—hyponormal operator is of stable sign index, then from
[7, Theorem 2.4] we have immediately the following corollary.

Corollary 2.9. Let Te B(H) be a log—hyponormal operator and
let f € Hol(G(T)). Then f (G, (T)) = G, (f(T).
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Berkani [6] proved that if 7€ B(H) is a hyponormal. Then T satisfies
generalized Weyl's theorem o0,,(T)=0c()—E (T). In the following
theorem, we extend this result to the case of a log—hyponormal operator.

Theorem 2.10. Let Te B(H) be a log—hyponormal. Then T satisfies
generalized Weyl's theorem o, (T)=0(T)-E (T).

Proof. Let Ac 6(T) -0y, (T). Then T —Alis a B—Fredholm operator of
index zero. Hence it follows from [10] that there exist M, N closed
subspaces of H such that H =M @ N,T — Al |, is a Fredholm operator of

index zero and T — A/ |, is a nilpotent operator.

Let R=T|,,,S=TIl,,and I, =11,,,I,=1I1,. Since T is a log—hyponormal
then so is R.Hence it follows from [8] that:

o(R)-o0, (R)=E,(R).
We have two cases:

Case 1: A€ o(R).. Since R —Al,is a Fredholm operator of index zero then
Ae E,(R) and so A is isolated in 6(R).

Since T—-A=(R-A1)®(S-A1,) is nilpotent then
o(T-Al)—{0}=0(R—AI,)—{0}. Therefore 0 is isolated in
o(T - Al),ie.,, A isisolated in o(T). Butsince A€ o,(R) then Ae E(T).
Case 2: A¢o(R). In this case we also deduce from
T—-AI=(R-Al)®(S—-Al,), that A is isolated in o(T). Since T —AI is
not invertible then Ae E(T).

Conversely let A€ E(T). Then A is isolated ino(T) and we can represent
T asadirect sum7 =7, @7, where o(T,)={A} and o(T,)=0(T)—{A}.

Since Tis log—hyponormal operator then 7; is also log—hyponormal
operator. Since T is invertible then O0¢ o(T"). Therefore we can write:
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k
0=F(T)=cT, - M) T[T -41),
j=1

with n#0, and 4, # 4, j=1,---, k.

Since T, —/1.].11 is invertible for every j=1,---,k,, then (7, —Al,)" =0and so
T, — Al is nilpotent. Since 7, —Al,is invertible it follows from [5] that
T — Al is a Fredholm operator of index 0. Therefore Ae o(T) -0y, (T).

Definition 2.11. [8, definition 3.1] An operator T € B(H) is called polaroid
if all isolated points of the spectrum of T are poles of the resolvent of T .

Corollary 2.12. Let T € B(H) be a log—hyponormal operator, then T is a
Polaroid operator.

Proof. This is an immediate consequence of lemma 2.2, theorem 2.10 and

[7].

The following result is a consequence of corollary 2.12 and [7].

Corollary 2.13. Let TeB(H)be a log—hyponormal, then
E(f(M)=x(f@))for every f € Hol(c(T)).

Theorem 2.14. Let T e B(H) be a log—hyponormal. Then f(T) satisfies
generalized Weyl's theorem o(f(T))—0,, (f(T)=E(fT)) for every
f e Hol(o(T)).

Proof. T satisfies generalized Weyl's theorem by theorem 2.10 and isoloid
by corollary  2.3. Moreover, from corollary 2.9  we
have o, (f(T))= f(0,,(T)). From [6, theorem 2.10], it follows that

f(T) satisfies generalized Weyl's theorem.
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