Malaysian Journal of Mathematical Sciences 2(1): 73-82 (2008)

Generalized Weyl's Theorem for Log-Hyponormal

M. H. M. Rashid, M. S. M.Noorani and A. S. Saari

School of Mathematical Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia. E-mail: malik_okasha@yahoo.com

ABSTRACT

In this paper, we prove that if T is \log -hyponormal then the generalized Weyl's theorem holds for T; that is, $\sigma_{BW}(T) = \sigma(T) - E(T)$.

2000 Mathematics Subject Classification. 47A53, 47A55. **Keywords:** log -hyponormal, Weyl's theorem.

INTRODUCTION

Let H be a complex Hilbert space and let B(H) be the algebra of all bounded linear operators acting on H. If $T \in B(H)$, we shall write ker(*T*), *ran*(*T*) for the null space and range of *T*, respectively. For $T \in B(H)$, we denote the spectrum, the point spectrum and the approximate point spectrum of *T* by $\sigma(T), \sigma_n(T)$ and $\sigma_n(T)$, respectively.

If $T \in B(H)$ set $\alpha(T) := \dim \ker(T)$, the dimension of the null space, and $\beta(T) := co - \dim ran(T)$, the co-dimension of the range.

The class of all upper semi-Fredholm operators is defined as the set $SF_+(H)$ of all $T \in B(H)$ such that $\alpha(T) < \beta(T)$ and ran(T) is closed. The class of all lower semi-Fredholm operators is defined as the set $SF_-(H)$ of all $T \in B(H)$ such that $\beta(T) < \infty$. The class of all semi-Fredholm operators is denoted by $SF_{\pm}(H)$, while by $F(H) = SF_+(H) \cap SF_-(H)$ we shall denote the class of all Fredholm operators.

The index of $T \in SF_{\pm}(H)$ is defined by $ind(T) = \alpha(T) - \beta(T)$. The other two quantities associated with a linear operator T are the ascent a := a(T), defined as the smallest non-negative integer s (if it does exist) such that $ker(T^s) = ker(T^{s+1})$ and the descent d := d(T), defined as the

smallest non-negative integer *t* (if it does exist) such that $ran(T^{t}) = ran(T^{t+1})$. It is well known that if $a(T - \lambda I)$ and $d(T - \lambda I)$ are both finite, then $a(T - \lambda I) = d(T - \lambda I)$ and λ is a pole of the resolvent $\lambda \rightarrow (T - \lambda I)^{-1}$, in particular an isolated point of the spectrum $\sigma(T)$ (see proposition 1.49 and theorem 1.52 of Dowson [9]). The class of Weyl's operators is defined by $W(T) := \{T \in F(H) : ind(T) = 0\}$ while the class of Browder operators is defined by:

$$Bro(H) = \{T \in F(H) : a(T) < \infty, d(T) < \infty\}$$

Obviously $Bro(H) \subseteq W(H)$. The Weyl's spectrum and the Browder's spectrum of $T \in B(H)$ are defined by:

$$\sigma_{W}(T) = \{ \lambda \in C : \lambda I - T \notin W(H) \}, \text{ and}$$

$$\sigma_{B}(T) = \{\lambda \in C : \lambda I - T \notin Bro(H)\}.$$

Berkani (1990) introduced the concept of B-Fredholm as follows: For each integer n, define T_n to be the restriction of T to $ran(T^n)$ viewed as a map from $ran(T^n)$ into $ran(T^n)$ (in particular $T_0 = T$).

If for some integer *n* the space $ran(T^n)$ is closed and T_n is a Fredholm operator, then *T* is called a *B*-Fredholm operator. In this case T_m is a Fredholm operator and $ind(T_n) = ind(T_m)$ for each $m \ge n$.

Let BF(H) be the class of all B-Fredholm operators. It is known that $F(H) \subseteq BF(H)$. Moreover, an operator $T \in B(H)$ is B-Fredholm if and only if $T = Q \oplus F$, where Q is a nilpotent operator and F is Fredholm. [3,Theorem 2.7]

Definition 1.1. [5] Let $T \in B(H)$. The *B*-Fredholm spectrum $\sigma_{BF}(T)$ is defined by:

$$\sigma_{\scriptscriptstyle BF}(T) = \{ \lambda \in C : \lambda I - T \notin BF(H) \}.$$

Definition 1.2. [3] Let $T \in B(H)$ be a B-Fredholm operator and let n be any integer such that T_n is a Fredholm operator. Then the index ind(T) of is T defined as the index of the Fredholm operator T_n .

Definition 1.3. [5] An operator $T \in B(H)$ is called a B-Weyl operator if it is a B-Fredholm operator of index 0. The B-Weyl spectrum $\sigma_{BW}(T)$ of T is defined by:

$$\sigma_{BW}(T) = \{ \lambda \in C : \lambda I - T \notin BW(H) \}.$$

In the case of a hyponormal operator acting on a Hilbert space H, Berkani [6] showed that:

$$\sigma_{BW}(T) = \sigma(T) - E(T),$$

where $\sigma_{BW}(T)$ is the *B*-Weyl spectrum of *T* and *E*(*T*) is the set of all eigenvalues of *T* which are isolated in the spectrum of *T*.

Definition 1.4. [5] Let $T \in B(H)$. We will say that:

- a) *T* satisfies Weyl's theorem if $\sigma_W(T) = \sigma(T) E_0(T)$, where $E_0(T)$ is the set of all eigenvalues of finite multiplicity isolated in $\sigma(T)$.
- b) T satisfies generalized Weyl's theorem if $\sigma_{BW}(T) = \sigma(T) E(T)$.
- c) *T* satisfies Browder's theorem if $\sigma_w(T) = \sigma(T) \pi_0(T)$, where $\pi_0(T)$ is the set of all poles of finite rank.
- d) *T* satisfies Browder's theorem if $\sigma_w(T) = \sigma(T) \pi(T)$, where $\pi(T)$ is the set of all poles.

From [3, 5, 7, 11] we have the following implication:

generalized Weyl's theorem \Rightarrow Weyl's theorem \Rightarrow Browder's theorem

generalized Browder's theorem \Leftrightarrow Browder's theorem

MAIN RESULTS

Following [8], an operator *T* is called log-hyponormal if *T* is invertible and satisfies $\log(T^*T) \ge \log(TT^*)$. Let T = U | T | be the decomposition of *T*. If *T* is log-hyponormal, then the operator *U* is unitary.

Cho Showed that if *T* is log-hyponormal operator, then so is T^{-1} . We write r(T) and W(T) for the spectral radius and numerical range, respectively. It is well-known that $r(T) \leq ||T||$ and that is W(T) convex with convex hull $conv\sigma(T) \subseteq \overline{W(T)}$. *T* is called convexoid if $conv\sigma(T) = \overline{W(T)}$, and normaloid if r(T) = ||T||.

Lemma 2.1[8]

If T = U | T | is a log-hyponormal operator, then T is normaloid; i.e., the spectral radius r(T) = ||T||.

Lemma 2.2

Let T = U | T | be a log-hyponormal operator and let $\lambda \in C$. Assume that $\sigma(T) = \{\lambda\}$. Then $T = \lambda I$.

Proof. Since *T* is log-hyponormal, then *T* is invertible and $\lambda \neq 0$. We see that T, T^{-1} are normaloid. On the hand $\sigma(T^{-1}) = \{\frac{1}{\lambda}\}$, so $||T|| ||T^{-1}|| = |\lambda| ||\frac{1}{\lambda}| = 1$. It follows that *T* is convexoid, so $W(T) = \{\lambda\}$. Therefore $T = \lambda I$.

Recall that an operator $T \in B(H)$ is called isoloid if all isolated points $iso(\sigma(T))$ of $\sigma(T)$ are eigenvalues of T. As a consequence of lemma 4 and [12, theorem 14] we have immediately

Corollary 2.3. Let $T \in B(H)$. If T is log-hyponormal, then T is isoloid.

Theorem 2.4. Let $T \in B(H)$ be a log-hyponormal operator, then T is of finite ascent.

Malaysian Journal of Mathematical Sciences

76

Proof. Let $x \in \ker(T^2)$, then $||Tx||^2 \le ||T^2x|| = 0$, and so $x \in \ker(T)$. Since by [9] the eigenvalues of log-hyponormal operators are normal eigenvalues of T, if $0 \ne \lambda \in \sigma_p(T)$ and $x \in \ker((T - \lambda I)^2), (T - \lambda I)(T - \lambda I) = 0 = (T - \lambda I)^*(T - \lambda I)x$ and $||(T - \lambda I)x||^2 = \langle (T - \lambda I)^*(T - \lambda I)x, x \rangle = 0.$

Hence, if T is log-hyponormal, then $a(T - \lambda I) = 1$.

Definition 2.5. [2, definition 1.1] Let $Hol(\sigma(T))$ be the space of all functions that are analytic in an open neighborhoods of $\sigma(T)$. Let $T \in B(H)$. The operator T is said to have the single-valued extension property at $\lambda_0 \in C$ (SVEP at λ_0), if for every open disc D_{λ_0} centered at λ_0 the only analytic function $f: D_{\lambda_0} \to H$ which satisfies the equation $(\lambda I - T)f(\lambda) = 0$ for all $\lambda \in D_{\lambda_0}$ is the function $f \equiv 0$.

Recall [1, 2, 11, 13, 14, 15] that an operator $T \in B(H)$ is said to have the SVEP if *T* has the SVEP at every point $\lambda \in C$. Trivially, an operator $T \in B(H)$ has the SVEP at every point of the resolvent $\rho(T) = C - \sigma(T)$. Moreover, from the identity theorem for analytic function it easily follows that *T* has the SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, *T* has the SVEP at every isolated point of the spectrum. Hence, we have the following implication

 $\sigma(T)$ does not cluster at $\lambda_0 \Rightarrow T$ has the SVEP at λ_0 .

In [15], Laursen proved that if T is of finite ascent, then T has SVEP.

Theorem 2.6. If $T \in B(H)$ is \log -hyponormal operator. Then T and T^* satisfy Weyl's theorem.

Proof. Since T is log-hyponormal, then T has SVEP. Then T satisfies Browder's theorem if and only if T^* satisfies Browder's theorem if and only if:

$$\pi_0(T) = \sigma(T) - \sigma_w(T) \subseteq E_0(T)$$
 and $\pi_0(T^*) = \sigma(T^*) - \sigma_w(T^*) \subseteq E_0(T^*)$.

If $\lambda \in E_0(T^*)$ then *T* and *T*^{*} both has SVEP at λ and $0 < a((T - \lambda I)^*) = d(T - \lambda I) < \infty$. Thus the ascent and descent of $T - \lambda I$ and $(T - \lambda I)^*$ are finite and hence equal [10]. Then $T - \lambda I$ and $(T - \lambda I)^*$ are Fredholm operators of index zero.

Consequently, $E_0(T) \subseteq \sigma(T) - \sigma_w(T)$ and $E_0(T^*) \subseteq \sigma(T^*) - \sigma_w(T^*)$. This implies that both *T* and *T*^{*} satisfy Weyl's theorem.

Definition 2.7. [7, definition 2.2] Let $T \in B(H)$. We will say that *T* is of stable sign index if for each $\lambda, \mu \in \rho_{BF}(T)$, $ind(\lambda I - T)$ and $ind(\mu I - T)$ have the same sign.

Proposition 2.8. Let $T \in B(H)$ be a log-hyponormal operator. Then T is of stable index.

Proof. Let *T* be a log-hyponormal operator. Then $\ker(T) = \ker(T^*) = ran(T)^{\perp}$. Since a(T) = 1, then $\ker(T) = \ker(T^2)$. Moreover, if *T* is also a *B* – Fredholm operator, then there exists an integer *n* such that $ran(T^n)$ is closed and such that $T_n : ran(T^n) \to ran(T^n)$ is a Fredholm operator. We have:

$$ind(T) = ind(T_n) = \dim(\ker(T) \cap ran(T^n) - \dim(r^{ran(T^n)})/ran(T^{n+1}))$$
$$= -\dim(r^{ran(T^n)})/ran(T^{n+1})$$

so $ind(T) \leq 0$.

Further, if $\lambda \in \rho_{BF}(T)$, then $\lambda I - T$ is a B-Fredholm operator, and $\lambda I - T$ is also a log-hyponormal operator. From the preceding argument, we have in $d(\lambda I - T) \leq 0$. Therefore T is of stable index.

Since a log-hyponormal operator is of stable sign index, then from [7, Theorem 2.4] we have immediately the following corollary.

Corollary 2.9. Let $T \in B(H)$ be a log-hyponormal operator and let $f \in Hol(\sigma(T))$. Then $f(\sigma_{BW}(T)) = \sigma_{BW}(f(T))$.

Berkani [6] proved that if $T \in B(H)$ is a hyponormal. Then *T* satisfies generalized Weyl's theorem $\sigma_{BW}(T) = \sigma(T) - E(T)$. In the following theorem, we extend this result to the case of a log-hyponormal operator.

Theorem 2.10. Let $T \in B(H)$ be a log-hyponormal. Then T satisfies generalized Weyl's theorem $\sigma_{_{RW}}(T) = \sigma(T) - E(T)$.

Proof. Let $\lambda \in \sigma(T) - \sigma_{BW}(T)$. Then $T - \lambda I$ is a B-Fredholm operator of index zero. Hence it follows from [10] that there exist M, N closed subspaces of H such that $H = M \oplus N, T - \lambda I|_M$ is a Fredholm operator of index zero and $T - \lambda I|_N$ is a nilpotent operator.

Let $R = T \mid_M S = T \mid_N$, and $I_1 = I \mid_M I_2 = I \mid_N$. Since T is a log-hyponormal then so is R. Hence it follows from [8] that:

$$\sigma(R) - \sigma_w(R) = E_0(R).$$

We have two cases:

Case 1: $\lambda \in \sigma(R)$. Since $R - \lambda I_1$ is a Fredholm operator of index zero then $\lambda \in E_0(R)$ and so λ is isolated in $\sigma(R)$.

Since $T - \lambda I = (R - \lambda I_1) \oplus (S - \lambda I_2)$ is nilpotent then $\sigma(T - \lambda I) - \{0\} = \sigma(R - \lambda I_1) - \{0\}.$ Therefore 0 is isolated in $\sigma(T - \lambda I)$, *i.e.*, λ is isolated in $\sigma(T)$. But since $\lambda \in \sigma_n(R)$ then $\lambda \in E(T)$. Case 2: $\lambda \notin \sigma(R)$. this In case we also deduce from $T - \lambda I = (R - \lambda I_1) \oplus (S - \lambda I_2)$, that λ is isolated in $\sigma(T)$. Since $T - \lambda I$ is not invertible then $\lambda \in E(T)$.

Conversely let $\lambda \in E(T)$. Then λ is isolated in $\sigma(T)$ and we can represent T as a direct sum $T = T_1 \oplus T_2$ where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) - \{\lambda\}$.

Since *T* is log-hyponormal operator then T_1 is also log-hyponormal operator. Since *T* is invertible then $0 \notin \sigma(T)$. Therefore we can write:

M. H. M. Rashid, M. S. M.Noorani & A. S. Saari

$$0 = F(T_1) = c(T_1 - \lambda I_1)^n \prod_{j=1}^k (T_1 - \lambda_j I_1),$$

with $n \neq 0$, and $\lambda_j \neq \lambda$, $j = 1, \dots, k$.

Since $T_1 - \lambda_j I_1$ is invertible for every $j = 1, \dots, k$, then $(T_1 - \lambda I_1)^n = 0$ and so $T_1 - \lambda I_1$ is nilpotent. Since $T_2 - \lambda I_2$ is invertible it follows from [5] that $T - \lambda I$ is a Fredholm operator of index 0. Therefore $\lambda \in \sigma(T) - \sigma_{BW}(T)$.

Definition 2.11. [8, definition 3.1] An operator $T \in B(H)$ is called polaroid if all isolated points of the spectrum of *T* are poles of the resolvent of *T*.

Corollary 2.12. Let $T \in B(H)$ be a log-hyponormal operator, then T is a Polaroid operator.

Proof. This is an immediate consequence of lemma 2.2, theorem 2.10 and [7].

The following result is a consequence of corollary 2.12 and [7].

Corollary 2.13. Let $T \in B(H)$ be a log-hyponormal, then $E(f(T)) = \pi(f(T))$ for every $f \in Hol(\sigma(T))$.

Theorem 2.14. Let $T \in B(H)$ be a log-hyponormal. Then f(T) satisfies generalized Weyl's theorem $\sigma(f(T)) - \sigma_{BW}(f(T)) = E(f(T))$ for every $f \in Hol(\sigma(T))$.

Proof. *T* satisfies generalized Weyl's theorem by theorem 2.10 and isoloid by corollary 2.3. Moreover, from corollary 2.9 we have $\sigma_{BW}(f(T)) = f(\sigma_{BW}(T))$. From [6, theorem 2.10], it follows that f(T) satisfies generalized Weyl's theorem.

Generalized Weyl's Theorem for Log-hyponormal

REFERENCES

- P. Aiena, C. Carpintero. 2005. Weyl's Theorem, a-Weyl's Theorem and Single-Valued Extension Property, *Extracta Math.*, 20(1): 25-41.
- P. Aiena, E. Rosas. 2003. Single-valued Extension Property at the Points of the Approximate point Spectrum, J. Math. Anal. Appl., 279:180-188.
- [3] M. Amouch. 2006. On the equivalence of Browder's and generalized Browder's theorem, *Glasgow Math. J.*,**48**:179-185.
- [4] M. Berkani. 1999. On A class of Quasi-Fredholm Operators, *Integ. Equat. Oper. Th.*, **34**:244-249.
- [5] M. Berkani. 2001. Index of B-Fredholm Operators and generalization of A Weyl Theorem, *Proc. Amer. Math. Soc.*, **130**:1717-1723.
- [6] M. Berkani, J. Koliha. 2003. Weyl Type Theorems For Bounded Linear Operators, *Acta Sci. Math.*, **69(1)**: 359-376.
- [7] M. Berkani, A. Arroud. 2004. Generalized Weyl's Theorem and Hyponormal Operators, *J.Aust. Math. Soc.*, **76**(2004):1-12.
- [8] M. Berkani. 2007. On the Equivalence of Weyl Theorem and Generalized Weyl Theorem, *Acta Math. Sinica*,23(1):103-110.
- [9] M. Cho, I. H. Jeon, J. I. Lee. 2000. Spectral and Structural Properties of log-hyponormal Operators, *Glasgow Math. J.*, 42(2000): 345-350.
- [10] H. R. Dowson. 1978. Spectral Theory of Linear Operators, Academic Press, London
- [11] J. K. Finch. 1975. The Single Valued Extension Property on a Banach Space, *Pacific J. Math.*, 58(1):61-69.
- [12] R. Harte, W. Y. Lee. 1997. Another Note On Weyl's Theorem, *Trans. Amer. Math. Soc.*, **349**(5): 2115-2124.

- [13] J. J. Koliha. 1996. Isolated Spectral Points, Proc. Amer. Math. Soc., 124(11):3417-3424.
- [14] M., Lahrouz and M. Zohry. 2005. Weyl Type Theorems and the Approximate point Spectrum, Irish Math. Soc. Bulletin, 55(2005):41-51.
- [15] K. B. Laursen, Operators with Finite Ascent, *Pacific J. Math.*, **152**(2):323-336.